

Assessing Sea Level Rise at the Regional to Local Scale Using Earth Observations

Ben Hamlington, NASA JPL Team Lead of NASA Sea Level Change Team August 24, 2021

Contributors to Sea Level Rise

• Sea Level in Past:

Mean Sea Level

Natural Variability

+ Tides, Waves, Winds

Moderate Safety

Gap

High Tide Flooding

Tides, Waves, Winds

Natural Variability (El Niño, Seasonal)

Mean Sea Level

Contributors to Sea Level Rise

Sea Level Now: Mean Sea Level

Sea Level Rise

Natural Variability

Subsidence

+ Tides, Waves, Winds

Small Safety Gap

LOCAL

REGIONAL

GLOBAL

Tides, Waves, Winds

Natural Variability (El Niño, Seasonal,

Sea Level Rise (Ice, Warming,

Mean Sea Level

Why is sea level rising globally?

- There are two reasons that sea level is rising on global scales:
 - 1. The ocean is warming \rightarrow water expands (thermal expansion).
 - 2. Ice on land is melting and the melt water is going into the ocean.

Why is sea level rising globally?

Ice (GRACE-FO)

Thermal Expansion (Argo)

Total Sea Level (Altimetry)

How do we measure global sea level change?

- For the last century, tide gauges have been used to measure sea level change along the world's coastlines.
- Challenges associated with combining these records and estimating global mean sea level.

How do we measure global sea level change?

- Since 1992, satellite altimeters have been used to measure sea surface height in the ocean.
- Continuous measurements with near-global coverage.
- Sentinel-6/Michael Freilich continues this record.

Satellite Altimetry

Satellite Altimetry

Global Mean Sea Level from Satellite Altimetry

Sentinel-6 continues 27+ years of sea level measurement from space.

With the launch of Sentinel-6A/Michael Freilich and Sentinel-6B in 2025, this record will surpass 40 years in length.

Why is the long record important?

Global Mean Sea Level

Why is sea level rising globally?

Ice (GRACE-FO)

Thermal Expansion (Argo)

Total Sea Level (Altimetry)

GRACE and GRACE-FO

- Gravity Recovery & Climate Experiment (GRACE; 2002-2016) and GRACE Follow-On (GRACE-FO; 2018-pres.) measure gravity changes on Earth.
 - These satellites can tell us how much ice is being lost.
 - They also tell us about the movement of water on Earth.

https://earthobservatory.nasa.gov/

Greenland Ice Sheet Mass Loss

Antarctic Ice Sheet Mass Loss

Sea Level Change from Ice Loss

Why is sea level rising globally?

Total Sea Level (Altimetry)

Argo Profiling Floats

- Since ~2005, Argo profiling floats have been measuring the temperature and salinity of the ocean from 0 to 2000 m below the surface.
- From these measurements we can estimate the impact of thermal expansion on sea level rise.

Sea Level Change from Thermal Expansion

Why is sea level rising globally?

Ice (GRACE-FO)

Thermal Expansion (Argo)

Total Sea Level (Altimetry)

Closing the Sea Level "Budget"

- Sea level changes on a wide range of space and time scales.
 - The ocean does not behave like a bathtub.
- Contributions to the pattern of regional sea level change:
 - Natural variability signals like El Niño-Southern Oscillation and North Atlantic Oscillation.
 - Ice-sheet "fingerprints".

- Sea level changes on a wide range of space and time scales.
 - The ocean does not behave like a bathtub.
- Contributions to the pattern of regional sea level change:
 - Natural variability signals like El Niño-Southern Oscillation and North Atlantic Oscillation.
 - Ice-sheet "fingerprints".

- Sea level changes on a wide range of space and time scales.
 - The ocean does not behave like a bathtub.
- Contributions to the pattern of regional sea level change:
 - Natural variability signals like El Niño-Southern Oscillation and North Atlantic Oscillation.
 - Ice-sheet "fingerprints".

- Sea level changes on a wide range of space and time scales.
 - The ocean does not behave like a bathtub.
- Contributions to the pattern of regional sea level change:
 - Natural variability signals like El Niño-Southern Oscillation and North Atlantic Oscillation.
 - Ice-sheet "fingerprints".

Sydney: 1.50 mm/yr

(VESL, sealevel.nasa.gov)

Coastal Subsidence

- In addition to the ocean rising, many coastal regions around the world are sinking. This contributes to a rise in relative sea level.
 - Groundwater withdrawal, glacial isostatic adjustments, and tectonics.
- Interferometric Synthetic Aperture Radar Analysis (InSAR) can be used to estimate this movement of land at high spatial resolutions.
 - Satellite measures change from one pass to another over the same location.

Credit: https://site.tre-altamira.com/

Coastal Subsidence

 NASA is using InSAR in coastal locations threatened by sea-level rise to estimate vertical land motion.

Zoom over Norfolk and Hampton Roads

Assessing Coastal Impacts

- Sea level is a global problem, but the impacts are local.
 - Flooding
 - Coastal Erosion
 - Saltwater Intrusion
 - Coastal Migration
 - Exposed Infrastructure
- A wide range of sea level "processes" can lead to coastal impacts.
- Important to consider how these processes combine and the timescales on which they combine.

- High-tide floods (HTF), previously known as nuisance floods, are already a problem along some U.S. coastlines.
- HTF is generally minor flooding that occurs at high tides in low-lying coastal locations (viewed as separate from storm-related flooding).
- HTF impacts coastal communities broadly, leading to business closures, transportation problems, and utility challenges.
- Accumulated effect over time can have a big impact on coastal infrastructure.
- Assessments of future HTF are critical for annual budgeting and long-term planning.
- Also, HTF is not always "minor".

Putting the Pieces Together

In Thompson et al. (2021), a statistical framework was developed to assess the combined impact of the processes that drive HTF using the best available information on each process.

Sea Level Scenarios and Projections

GMSL Scenario (meters)	2010	2020	2030	2040	2050	2060	2070	2080	2090	2100	2120	2150	2200
Low	0.03	0.06	0.09	0.13	0.16	0.19	0.22	0.25	0.28	0.30	0.34	0.37	0.39
Intermediate- Low	0.04	0.08	0.13	0.18	0.24	0.29	0.35	0.4	0.45	0.50	0.60	0.73	0.95
Intermediate	0.04	0.10	0.16	0.25	0.34	0.45	0.57	0.71	0.85	1.0	1.3	1.8	2.8
Intermediate- High	0.05	0.10	0.19	0.30	0.44	0.60	0.79	1.0	1.2	1.5	2.0	3.1	5.1
High	0.05	0.11	0.21	0.36	0.54	0.77	1.0	1.3	1.7	2.0	2.8	4.3	7.5
Extreme	0.04	0.11	0.24	0.41	0.63	0.90	1.2	1.6	2.0	2.5	3.6	5.5	9.7

Flooding Thresholds

Tidal Variations

Note: The angles between the moon's orbit and equator have been

Projected HTF days

NOAA Intermediate SLR scenario

YOI

Five-year average

Clustering of HTF days

NOAA Intermediate SLR scenario

NASA Sea Level Change Team

- Satellites will play a critical role in monitoring these processes and providing important information to decision-makers and planners.
 - What can NASA do to provide "useful" information?
- To meet this challenge, NASA created the NASA Sea Level Change Team (N-SLCT) in 2014.
 - 70+ scientists from government and academia.
 - Web portal at sealevel.nasa.gov was created as part of this effort.

Two Goals:

- Science: Provide improved forecasts of sea level across a range of timescales.
- Outreach: Connect with practitioners and stakeholders to define and provide 'useful' sealevel information.

Satellite and Integrated Product Demo

- Full list of data tools on NASA sea level portal can be found here: https://sealevel.nasa.gov/data/tools.
- As a demonstration of how these tools and data can be combined to understand past, present, and future sea level, let's take a look at:
 - Data Analysis Tool: https://sealevel.nasa.gov/data_tools/1
 - Virtual Earth System Laboratory: https://sealevel.nasa.gov/data_tools/2
 - Sea Level Evaluation and Assessment Tool: https://sealevel.nasa.gov/data_tools/16
 - IPCC AR6 Sea Level Projection Tool: https://sealevel.nasa.gov/data_tools/17
 - Flooding Days Projection Tool: https://sealevel.nasa.gov/data_tools/15

Homework and Certificate

- One homework assignment:
 - Answers must be submitted via Google Form, accessed from the ARSET website.
 - Homework will be made available on August 26th.
 - Due date for homework: September 15, 2021
- A certificate of completion will be awarded to those who:
 - Attend all live webinars
 - Complete the homework assignment by the deadline
 - You will receive a certificate approximately two months after the completion of the course from: marines.martins@ssaihq.com

Contacts

Trainers:

Benjamin Hamlington:
 benjamin.d.hamlington@jpl.nasa.gov

Follow us on Twitter

@NASAARSET

Training Webpage:

 https://appliedsciences.nasa.gov/joinmission/training/english/arset-satellite-observationsanalyzing-natural-hazards-small-island

ARSET Website:

 https://appliedsciences.nasa.gov/what-wedo/capacity-building/arset

Questions

- Please enter your questions in the Q&A box. We will answer them in the order they were received.
- We will post the Q&A to the training website following the conclusion of the webinar.

Image Credit: NOAA

Thank You!

